PERAMALAN LAJU INFLASI DENGAN METODE AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)
DOI:
https://doi.org/10.24034/j25485024.y2010.v14.i4.176Keywords:
Auto Regressive Integrated Moving Average (ARIMA), Inflation, Consumer Price Index (CPI)Abstract
Auto Regression Integrated Moving Average (ARIMA) or the combination model of Auto Regression with moving average, is a linier model which is able to represent the stationary time series or non stationary time series. The purpose of this research is to forecast the inflation rate in November 2010 with the Consumer Price Index (CPI) by using ARIMA. The inflation indicator is very important to anticipate in making the Government’s policy and decision as well as for the citizen is for the information to determine what to do in related with savings and investment. By looking at the existing criteria, it is determined that the best model is ARIMA (1,1,0) or AR (1). Model ARIMA (1,1,0), the coefficient value AR (1) is significant,which has the most minimum value of Akaike Info Criterion (AIC) and Schwars Criterion (SC) compare toARIMA (0,1,1) or MA (1) and ARIMA (1,1,1) or AR (1) MA (1). In summarize, the ARIMA model used to forecast the valueof IHK is ARIMA (1,1,0).
References
Bianco, A.M., Garcı´a, B.M., Martı´nez, E.J. and Yohai, V.J. 2001. “Outlier detection in regressionmodels with ARIMA errors using robust estimates”, Journal of Forecasting, Vol. 20 No. 8,pp. 565-79.
Boediono. 1982. Ekonomi Makro, BPFE, Yogyakarta.
Diebold, F.X. and Nerlove, M. 1989. “The dynamics of exchange rate volatility: a multivariate latent factor ARCH model”, Journal of Applied Econometrics, Vol. 4 No. 1, pp. 1-21.
Enders, W. 1995. Applied Economic Time Series, New York:John Wiley & Sons.
Fery Andrianus. 2006. Analisa Faktor-faktor Yang Mempengaruhi Inflasi di Indonesia Periode 1997:3 – 2005:2, Jurnal Ekonomi Pembangunan vol 11, No 2.
Gujarati, Damodar N. 1995. Basic Econometrics, 3th edition, McGraw-Hill, Inc, Singapore.
Goodfriend, Marvin.1990. “Comments on Money Demand, Expectations and the Forward Looking Model.” Journal of PolicyModeling 12 (Z).
Phillips, P, and P. Perron. 1988. “Testing for a unit root in time series regression.” Bimetrika, 75: 335-346.
Spyros, Steven, Victor. 1995. Forcasting, alih bahasa Untung, Abdul Basith, cetakan kelima,Erlangga, Jakarta.
Soeratno. 2004. Ekonomi Makro Pengantar, Bagian Penerbitan STIE YKPN, Yogyakarta.
Sukirno Sadono. 2000. Makroekonomi Modern, PT Raja Grafindo Persada, Jakarta.
Suparmoko. 1990. Pengantar Ekonomi Makro, BPFE UGM, Yogyakarta.
Weiss, A.A. 1984. ARMA models with ARCH errors”, Journal of Time Series Analysis”, Vol.5No. 2, pp. 129-43.
Winarno Wahyu W. 2007. Analisis Ekonometrika dan Statistika dengan Eviews.